| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- {
- "policy_class": {
- ":type:": "<class 'abc.ABCMeta'>",
- ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
- "__module__": "stable_baselines3.dqn.policies",
- "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
- "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
- "__init__": "<function DQNPolicy.__init__ at 0x00000257DD91BC70>",
- "_build": "<function DQNPolicy._build at 0x00000257DD91BD00>",
- "make_q_net": "<function DQNPolicy.make_q_net at 0x00000257DD91BD90>",
- "forward": "<function DQNPolicy.forward at 0x00000257DD91BE20>",
- "_predict": "<function DQNPolicy._predict at 0x00000257DD91BEB0>",
- "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x00000257DD91BF40>",
- "set_training_mode": "<function DQNPolicy.set_training_mode at 0x00000257DD948040>",
- "__abstractmethods__": "frozenset()",
- "_abc_impl": "<_abc._abc_data object at 0x00000257DD93AD80>"
- },
- "verbose": 1,
- "policy_kwargs": {},
- "num_timesteps": 8000,
- "_total_timesteps": 8000,
- "_num_timesteps_at_start": 0,
- "seed": null,
- "action_noise": null,
- "start_time": 1756780002688793400,
- "learning_rate": 0.0001,
- "tensorboard_log": "./uf_dqn_tensorboard\\DQN_lr0.0001_buf2000_bs16_gamma0.95_exp0.6_default_20250902-102641",
- "_last_obs": {
- ":type:": "<class 'numpy.ndarray'>",
- ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAMIqXT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLAYaUjAFDlHSUUpQu"
- },
- "_last_episode_starts": {
- ":type:": "<class 'numpy.ndarray'>",
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
- },
- "_last_original_obs": {
- ":type:": "<class 'numpy.ndarray'>",
- ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAANvVxj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLAYaUjAFDlHSUUpQu"
- },
- "_episode_num": 800,
- "use_sde": false,
- "sde_sample_freq": -1,
- "_current_progress_remaining": 0.0,
- "_stats_window_size": 100,
- "ep_info_buffer": {
- ":type:": "<class 'collections.deque'>",
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQB+shouf29OMAWyUSwqMAXSUR0A2pKDkELYxdX2UKGgGR0AhALl3hXKbaAdLCmgIR0A2qUIcBEKFdX2UKGgGR0AhWsmOU+s6aAdLCmgIR0A2rZx7zCk5dX2UKGgGR0Ad5xrBTGYKaAdLCmgIR0A2sfdhy8zzdX2UKGgGR0AiBf4yoGY8aAdLCmgIR0A2ttSydFvydX2UKGgGR0AhbdIoVmBfaAdLCmgIR0A2u/N7jT8YdX2UKGgGR0AddJcxCY1HaAdLCmgIR0A2wVgQYk3TdX2UKGgGR0Ahcrjo6jnFaAdLCmgIR0A2xkmQbMoudX2UKGgGR0AciYtxuKoAaAdLCmgIR0A2y6E8JUo8dX2UKGgGR0AgJjWkJrtWaAdLCmgIR0A20MpgCwKTdX2UKGgGR0AgkLLpzLfUaAdLCmgIR0A21SW7e2uxdX2UKGgGR0AaPvfCQ9zPaAdLCmgIR0A22YA80UGndX2UKGgGR0Ag3/jsD4gzaAdLCmgIR0A23klu3trsdX2UKGgGR0Ah3yIYWLxaaAdLCmgIR0A24mu1WsBAdX2UKGgGR0AhWSyt3fQ8aAdLCmgIR0A25s3hn8KpdX2UKGgGR0AcGizsyBTXaAdLCmgIR0A27AMlTm4idX2UKGgGR0Ahs2bXpW3jaAdLCmgIR0A28ajN6gM+dX2UKGgGR0AgeHP/rB0qaAdLCmgIR0A29s41gpjMdX2UKGgGR0AhxsY2sJY1aAdLCmgIR0A2/C9AX2ugdX2UKGgGR0Ahg/jbSJCTaAdLCmgIR0A3AWP91loUdX2UKGgGR0AdNZ+x4Y78aAdLCmgIR0A3Bx4Y77sOdX2UKGgGR0Ag25OrQw9JaAdLCmgIR0A3C4FA3T/idX2UKGgGR0Ah2c9W6shgaAdLCmgIR0A3D+IuXeFddX2UKGgGR0AhXAKOT7l8aAdLCmgIR0A3FH3Dej20dX2UKGgGR0AhPVKf4AS4aAdLCmgIR0A3GYRujynUdX2UKGgGR0AcxCrtE5QxaAdLCmgIR0A3HiAUcn3MdX2UKGgGR0AdKoLofSx8aAdLCmgIR0A3IwxFiKBNdX2UKGgGR0Ag0FKTSsr/aAdLCmgIR0A3KIfr8iwCdX2UKGgGR0AgBMi8nNPhaAdLCmgIR0A3LfKp1ie/dX2UKGgGR0Ac6GFi8WbgaAdLCmgIR0A3M4z7/GVBdX2UKGgGR0Ahp8/lhgE2aAdLCmgIR0A3OMi8nNPhdX2UKGgGR0AdpYuCf6GhaAdLCmgIR0A3PXko4MnadX2UKGgGR0AaOtbLU1AJaAdLCmgIR0A3QnrIHTqjdX2UKGgGR0AgWQiA2AG0aAdLCmgIR0A3RvicXm/4dX2UKGgGR0AgSbZvkzXSaAdLCmgIR0A3S5U96kZadX2UKGgGR0AddzZHuqm1aAdLCmgIR0A3UD9fkWAPdX2UKGgGR0AiBytmthd/aAdLCmgIR0A3VUFSsKb8dX2UKGgGR0AfLLidat9yaAdLCmgIR0A3Wr+o99tudX2UKGgGR0AbkXUH6dlNaAdLCmgIR0A3YKAavRqodX2UKGgGR0AbXuNPxhDxaAdLCmgIR0A3Zc0cfeUIdX2UKGgGR0Aa5MPBi1AraAdLCmgIR0A3a9Ujs2NvdX2UKGgGR0AfdFocrAgxaAdLCmgIR0A3cLvTgEU1dX2UKGgGR0AeyCrcTJyRaAdLCmgIR0A3dUB4lhPTdX2UKGgGR0AhIUB4lhPTaAdLCmgIR0A3eauOjqOcdX2UKGgGR0AeT876pHZsaAdLCmgIR0A3fnDziCJ5dX2UKGgGR0AbbmEGqxTsaAdLCmgIR0A3gsrupjtpdX2UKGgGR0AdLHBDXvphaAdLCmgIR0A3hy0rsjVydX2UKGgGR0AetBWxQizLaAdLCmgIR0A3jBHCoCMhdX2UKGgGR0AcDf2saKk3aAdLCmgIR0A3kmw7kn1GdX2UKGgGR0AhxCsOoYNzaAdLCmgIR0A3mB0ZFXq8dX2UKGgGR0AiCXLNfPX1aAdLCmgIR0A3nLux8lXzdX2UKGgGR0AiElC1JDmbaAdLCmgIR0A3omJ3xFy8dX2UKGgGR0Af+ojv/io9aAdLCmgIR0A3p65Gz8gqdX2UKGgGR0Ah2PlMh5gPaAdLCmgIR0A3rD8cdYGMdX2UKGgGR0Agh82rGR3eaAdLCmgIR0A3sSW7e2uxdX2UKGgGR0AbUU1yeZogaAdLCmgIR0A3tcQiA2AHdX2UKGgGR0AamMju8brDaAdLCmgIR0A3uqRlpXZHdX2UKGgGR0AhaYj0L+glaAdLCmgIR0A3v0ygwoLHdX2UKGgGR0AhGliSaEzwaAdLCmgIR0A3xFCb+cYqdX2UKGgGR0AfhkMCtA9naAdLCmgIR0A3yTvRZ2ZBdX2UKGgGR0AiEMqBmPHUaAdLCmgIR0A3zlbNbC79dX2UKGgGR0Ac6P2f029+aAdLCmgIR0A303Sro4dZdX2UKGgGR0AhoOT7l7tzaAdLCmgIR0A32F6iTMaCdX2UKGgGR0Ad3Ak9lmOEaAdLCmgIR0A33KLbYbsGdX2UKGgGR0AhSAz544ZNaAdLCmgIR0A34lTFVDKHdX2UKGgGR0Ahndt2s7uEaAdLCmgIR0A35vSc9W6tdX2UKGgGR0Afqmce8wpOaAdLCmgIR0A36+98JD3NdX2UKGgGR0AenEjxCpm3aAdLCmgIR0A38QwblzU7dX2UKGgGR0Ah4taIN3GGaAdLCmgIR0A39o99tuUEdX2UKGgGR0AhVfBN21UmaAdLCmgIR0A3/DK5kK/mdX2UKGgGR0AcsEwFkhA4aAdLCmgIR0A4AULUkOZtdX2UKGgGR0AbGoQ4CIUKaAdLCmgIR0A4Bh4+r2g4dX2UKGgGR0Ahy7Rv3rUtaAdLCmgIR0A4C4TK1XvIdX2UKGgGR0AhSFvAGjbjaAdLCmgIR0A4D+CsfaHsdX2UKGgGR0AhZsEaESM+aAdLCmgIR0A4FGFi8WbgdX2UKGgGR0Agd0f5k9U0aAdLCmgIR0A4GT+NtIkJdX2UKGgGR0AgNT5wfhddaAdLCmgIR0A4HdoFmnO0dX2UKGgGR0AiC9Pk7wKCaAdLCmgIR0A4IjUutfXxdX2UKGgGR0Ag2Tq0MPSVaAdLCmgIR0A4JxHXmNipdX2UKGgGR0Agr101ZTybaAdLCmgIR0A4K9sabWmQdX2UKGgGR0Ah5P8AJb+taAdLCmgIR0A4MXPqs2ehdX2UKGgGR0AhrWtEG7jDaAdLCmgIR0A4NpLVWjoIdX2UKGgGR0AiAHX2/SH/aAdLCmgIR0A4O7FbVz6rdX2UKGgGR0AiAFXaJyhjaAdLCmgIR0A4QE5yU9pzdX2UKGgGR0Aaip97WuoxaAdLCmgIR0A4RUxEfDDTdX2UKGgGR0Aej1jAi3XqaAdLCmgIR0A4Sa7EpAlfdX2UKGgGR0AgKRSxZ+x4aAdLCmgIR0A4TgjQiRnwdX2UKGgGR0Aed8zAN5MUaAdLCmgIR0A4UlA/s3Q2dX2UKGgGR0Aad92HLzPKaAdLCmgIR0A4Vs/IKc/ddX2UKGgGR0Af8wK0D2alaAdLCmgIR0A4W+UyHmA9dX2UKGgGR0Ag/MN+b3GoaAdLCmgIR0A4YZpi7TUidX2UKGgGR0Ahu3AEdNnHaAdLCmgIR0A4Zxj8UEgXdX2UKGgGR0Ag0UahpQDWaAdLCmgIR0A4bP0I1LrYdX2UKGgGR0AgwX9itq59aAdLCmgIR0A4cl1r6+FldX2UKGgGR0Afx3bEgntwaAdLCmgIR0A4dtk4FRpDdX2UKGgGR0AdNOrQw9JSaAdLCmgIR0A4ezw+dK/VdX2UKGgGR0Ag3ikwevIPaAdLCmgIR0A4f78Nx2jgdX2UKGgGR0AhLbeMyad+aAdLCmgIR0A4hFqzqrzYdX2UKGgGR0AfJAyEcsDoaAdLCmgIR0A4iLTQVsUJdX2UKGgGR0Agw98JD3M7aAdLCmgIR0A4jQ8fV7QcdWUu"
- },
- "ep_success_buffer": {
- ":type:": "<class 'collections.deque'>",
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
- },
- "_n_updates": 7800,
- "observation_space": {
- ":type:": "<class 'gymnasium.spaces.box.Box'>",
- ":serialized:": "gAWViAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAAAAlGgLSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYBAAAAAAAAAAGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBZ0lFKUjARoaWdolGgTKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYBAAAAAAAAAAGUaB1LAYWUaBZ0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
- "dtype": "float32",
- "_shape": [
- 1
- ],
- "low": "[0.]",
- "bounded_below": "[ True]",
- "high": "[1.]",
- "bounded_above": "[ True]",
- "low_repr": "0.0",
- "high_repr": "1.0",
- "_np_random": null
- },
- "action_space": {
- ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
- ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooREK/nefAJy2w3NofazSLr7ACMA2luY5SKEJ8xJc2y0uhc9kyxO5aqLCV1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKtGcFBHVidWIu",
- "n": "48",
- "start": "0",
- "_shape": [],
- "dtype": "int64",
- "_np_random": "Generator(PCG64)"
- },
- "n_envs": 1,
- "buffer_size": 2000,
- "batch_size": 16,
- "learning_starts": 200,
- "tau": 1.0,
- "gamma": 0.95,
- "gradient_steps": 1,
- "optimize_memory_usage": false,
- "replay_buffer_class": {
- ":type:": "<class 'abc.ABCMeta'>",
- ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
- "__module__": "stable_baselines3.common.buffers",
- "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
- "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
- "__init__": "<function ReplayBuffer.__init__ at 0x00000257DD688040>",
- "add": "<function ReplayBuffer.add at 0x00000257DD6880D0>",
- "sample": "<function ReplayBuffer.sample at 0x00000257DD688160>",
- "_get_samples": "<function ReplayBuffer._get_samples at 0x00000257DD6881F0>",
- "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x00000257DD688280>)>",
- "__abstractmethods__": "frozenset()",
- "_abc_impl": "<_abc._abc_data object at 0x00000257DD673DC0>"
- },
- "replay_buffer_kwargs": {},
- "train_freq": {
- ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
- ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
- },
- "use_sde_at_warmup": false,
- "exploration_initial_eps": 1.0,
- "exploration_final_eps": 0.02,
- "exploration_fraction": 0.6,
- "target_update_interval": 1000,
- "_n_calls": 8000,
- "max_grad_norm": 10,
- "exploration_rate": 0.02,
- "lr_schedule": {
- ":type:": "<class 'function'>",
- ":serialized:": "gAWVRgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEhGOlxkYXRhc2V0XHd1eGlcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpRLYkMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA51Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBiMCDxsYW1iZGE+lIwMX19xdWFsbmFtZV9flIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlGgCKGgHKEsBSwBLAEsBSwFLE0MEiABTAJRoCSmMAV+UhZRoDowEZnVuY5RLhkMCBAGUjAN2YWyUhZQpdJRSlGgVTk5oHClSlIWUdJRSlGgiaD19lH2UKGgYjARmdW5jlGgmjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgofZRoKk5oK05oLGgZaC1OaC5oMEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEZdlGhIfZR1hpSGUjAu"
- },
- "batch_norm_stats": [],
- "batch_norm_stats_target": [],
- "exploration_schedule": {
- ":type:": "<class 'function'>",
- ":serialized:": "gAWVAgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEhGOlxkYXRhc2V0XHd1eGlcdmVudlxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEt0QwYMAQQBGAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgcKVKUaBwpUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/lHrhR64Ue4WUUpRoNkc/4zMzMzMzM4WUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
- }
- }
|